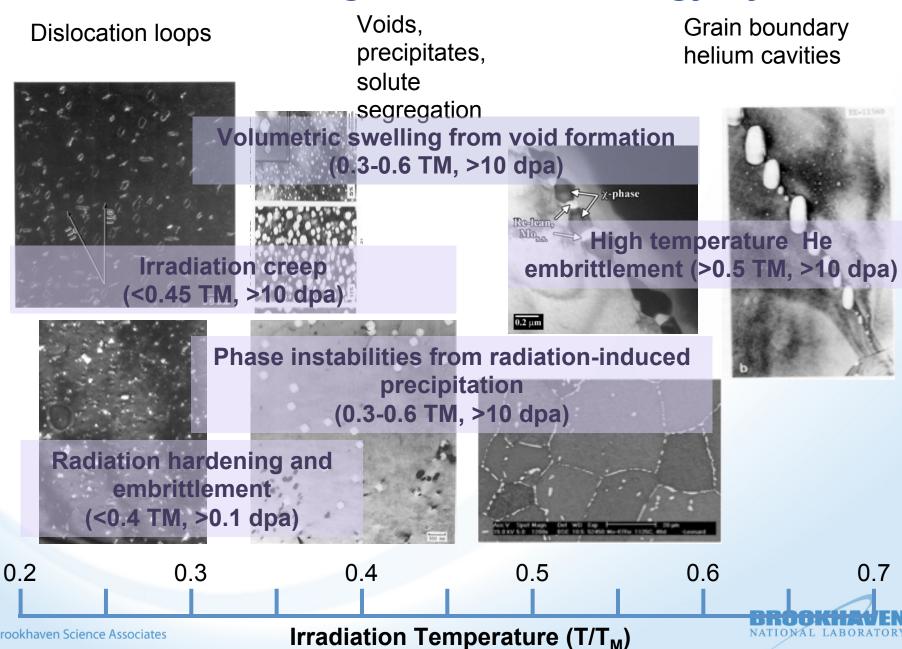
Characterization of Nanocomposite Materials for Nuclear Energy Systems Using Synchrotron Radiation

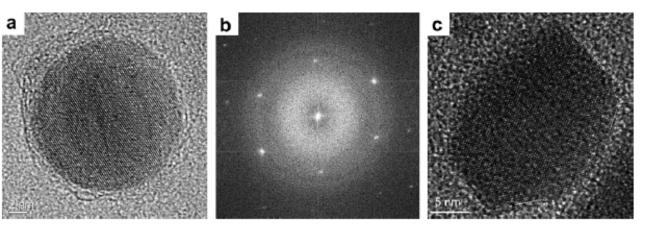
Lynne Ecker, Simerjeet Gill, Avishai Ofan, and Lars Ehm Brookhaven National Laboratory

Amit Misra and Stuart Maloy, Los Alamos National Laboratory

Collaborators: Michael Demkowicz (MIT), Elaine DiMasi (BNL), Robert Odette (UC Santa Barbara), Bruce Ravel (NIST) and Vesna Stanic (BNL)


September 17 and 18, 2012

a passion for discovery



Radiation Damage in Nuclear Energy Systems

Brookhaven Science Associates

Oxide Dispersion Strengthened Steels

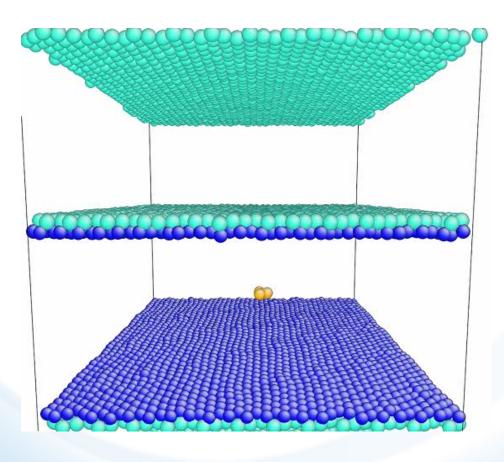
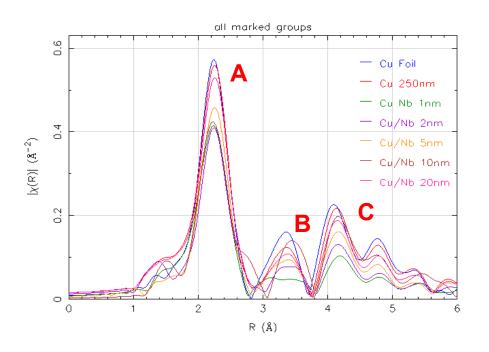
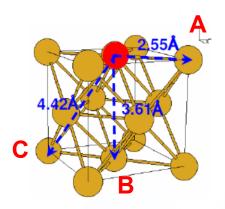

Y. Wu, EM Haney, NJ Cunningham, GR Odette Acta Mat 60(2012) 3456

Fig. 8. A HRTEM lattice image of a large feature in (a) US MA957, (b) the corresponding FFT power spectrum and (c) HRTEM lattice image of a large unidentified precipitates (c).

- New reactors require higher temperature materials (550°C), higher dose materials (>200 dpa)
- Oxide Dispersion Strengthened (ODS) Steels are excellent candidates
- Interfaces in ODS Steels are sites for defect recombination, but are geometrically complex and difficult to study
- Six known Y-Ti-O phases
- Atom Probe Tomography suggests highly non-stoichiometric, coherent transition phases
- Some HRTEM-FFT suggests Y₂TiO₅; latest HRTEM suggests small features (d<5nm) to be Y₂Ti₂O₇
- DFT models suggests Y₂Ti₂O₇ more stable than a coherent transition phase

Model Material System: Cu-Nb Nanocomposite


Improved Radiation Tolerance in Nanocomposites



- Damage can heal in the vicinity of a Cu-Nb interface
- Measure the defect densities as a function of time
- Study the dynamics of process
- Experiment will validate existing simulations
- New reactors require materials for higher dose

Preliminary Results for Cu/Nb Multilayer Composites

Sample	Cu layer	Relative Percent	Missing ordered Cu		
	thickness	peak (%)	(%)		
Cu Control (250nm)	250nm	99.4	0.6		
Cu /Nb (20nm)	20nm	93.3	6.7		
Cu /Nb (5nm)	10nm	79.4	20.6		
Cu /Nb (2nm)	5nm	71.6	28.4		
Cu /Nb (1nm)	2nm	71.3	28.7		

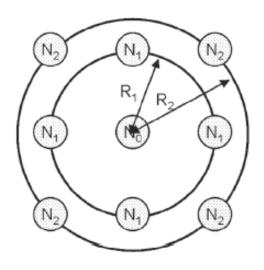
Fourier Transform of Copper/Nb nanolayered $\chi(k)$ function vs radial distance R(Å). The plots correspond to copper foil as a standard, Cu control sample (250nm) and Cu/Nb nanolayered samples with layer thickness (20nm, 10nm, 5nm, 2nm, 1nm). The total thickness for all samples was kept constant at 250nm.

Modeling EXAFS

- Guess atomic configuration and scattering paths
- Fit the model to the data and analyze parameters from the fit
- When fit is sufficient, accept atomic positions as accurate

MD-EXAFS approach

 Molecular Dynamics (MD) simulations can compute atomic positions and path lengths, which can be used to inform an EXAFS analysis.


Advantages:

- Large sample accounts for non-gaussian distribution.
- Under-coordination can be incorporated into the fit
- Both sources of disorder thermal and structural addressed
- Direct comparison of EXAFS measurements with MD simulation, can lead to useful feedback loop between both techniques.

Modeling EXAFS

EXAFS is represented as a sum over all photoelectron scattering geometries:

$$\chi(k,\Gamma) = \operatorname{Im}\left(\frac{(N_{\Gamma}S_0^2)F_{\Gamma}(k)}{kR_{\Gamma}^2}e^{i(2kR_{\Gamma}+\Phi_{\Gamma}(k))}e^{-2\sigma_{\Gamma}^2k^2}e^{-2R_{\Gamma}/\lambda(k)}\right)$$

$$R_{\Gamma} = R_{0,\Gamma} + \Delta R_{\Gamma}$$
 $k = \sqrt{2m_e(E - E_0)/\hbar^2}$

$$\chi(k) = \sum_{\Gamma} \chi(k, \Gamma)$$

Multiple scattering theory is used to generate the brown terms

 N_2 R_0

 $[N_2]$

 N_1 N_0 N_0 N_1

 $R_{0,\Gamma}$ nominal path length

 F_{Γ} effective scattering amplitude

 Φ_{Γ} effective scattering phase shift

λ mean free path

Structural and electronic information is determined from the blue terms

 ΔR_{Γ} change in half path length

 σ_{Γ} mean squared displacement

 N_{Γ} path multiplicity

 S_0^2 passive electron reduction


 E_0 overall energy shift

Above equation assumes N scattering atoms are at a given distance are distributed with Gaussian disorder contained in the $e^{-2\sigma}_{r}^{2k2}$ term

Atomic Positions from Molecular Dynamics

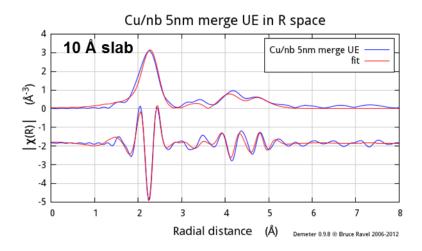
The disordered portion of the MD simulation can be emphasized by limiting atoms within 5 Å of the Cu/Nb interface. This presents a PDF that is quite non-Gaussian

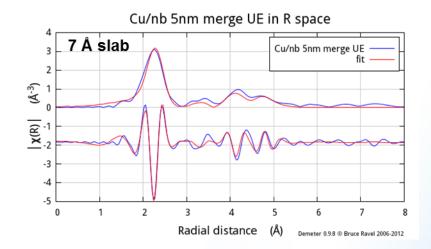
1200 Nistogram —

800

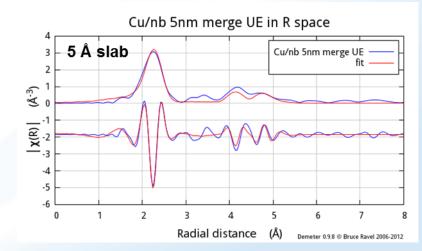
200

2.5 3 3.5 4 4.5 5 FRadial distance (A) Constant 0.316 Brown floor 2006-2012

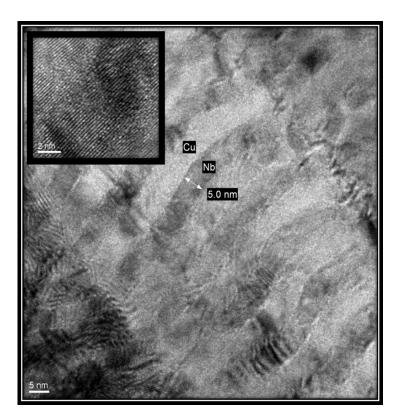

Cu-Cu SS histogram

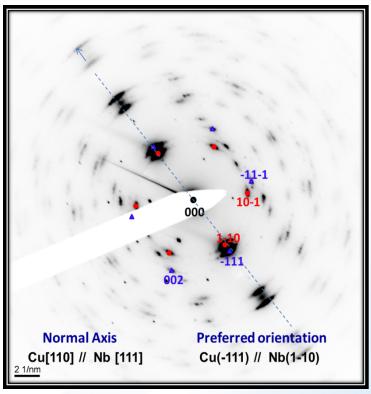

10 Å slab: 340,276 Cu-Cu pairs, binned into 615 bins of size 0 005 Å

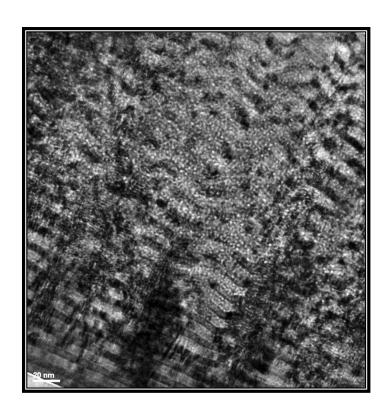
5 Å slab: 87,948 Cu-Cu pairs, binned into 615 bins of size 0.005

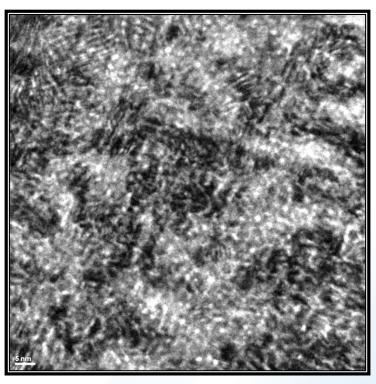


Results from the MD/EXAFS models



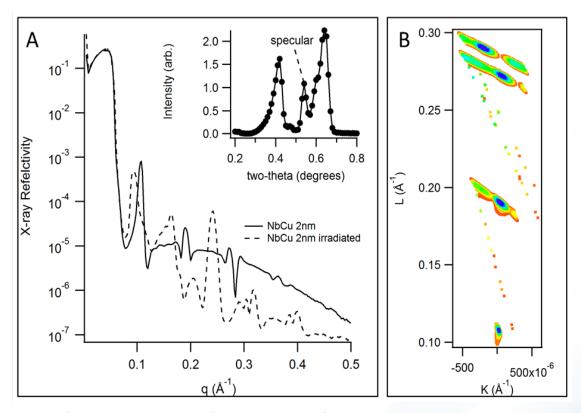

- Increasing contribution from interface (from 10Å to 5Å) results in smaller σ² values. However, disorder in the MD simulation is not consistent with the disorder observed in the measured EXAFS data. The "disappearance" of the 2nd shell in the fit with the 5 Å slab suggests this.
- As the samples get thinner, the undercoordination increases. For 20nm, 5nm and 2nm Cu/Nb samples coordination numbers from fit using 7 Å slab are ~ 11.4, 10.4 and 8.5


HRTEM results for Cu/Nb nanocomposites



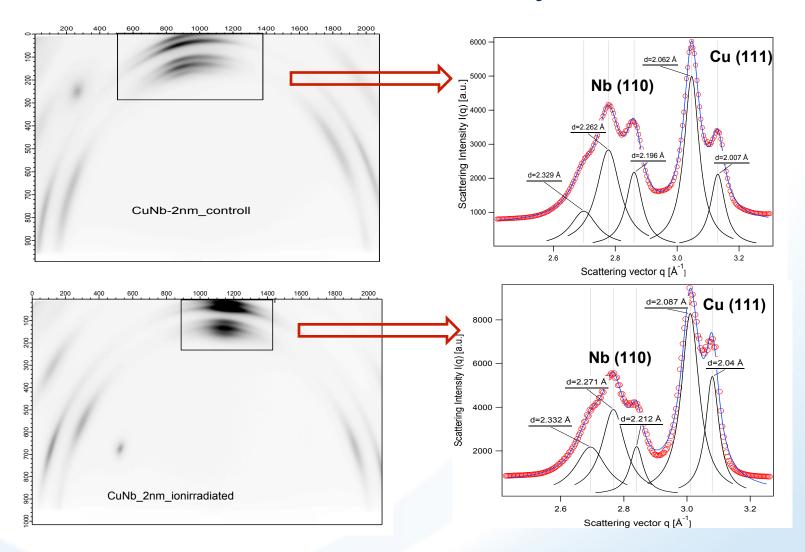
HRTEM of 5nm Cu/Nb nanocomposite control sample: (left and inset): alternating Cu and Nb layers observed with atomic resolution. SAED (right): preferential alignment of Cu (111) and Nb (1-10) in the multilayer normal direction (dashed line) is observed and allows complete indexing of the diffraction pattern.

HRTEM results for Cu/Nb nanocomposites



HRTEM of 5nm Cu/Nb nanocomposite sample irradiated with 33KeV He⁺ ions with a dose of 1.5 X10 ¹⁷cm³, (Left): He bubbles observed under defocused condition with peak concentration around 150-180nm under the surface. (Right) He Bubbles observed were very small (~1-2nm).

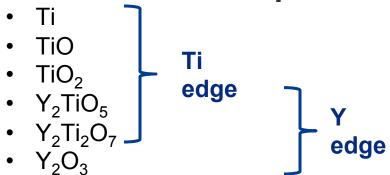
X-Ray Reflectivity Results for Cu/Nb Multilayers



X-Ray Reflectivity data for a 2nm Cu/Nb multilayer samples, showing both as-prepared (Solid-line) and He-irradiated (200KeV) (dashed line) samples

Reflectivity oscillations show that surface roughness of irradiated 2nm Cu/Nb multilayer is significantly greater than the as-prepared multilayer

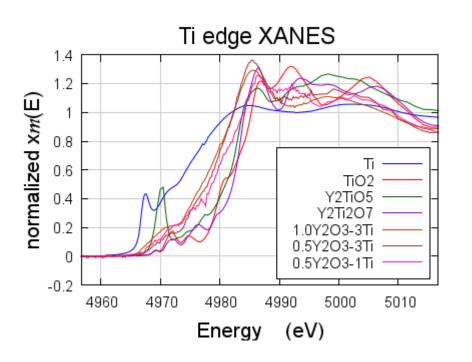
GI-WAXS Results for Cu/Nb Multilayers

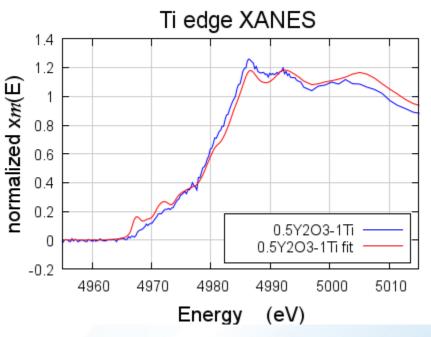


Deformation of the lattices Nb (110) and Cu (111) suggest strain

Structure of nanoparticles in Oxide Dispersion Strengthened Steels

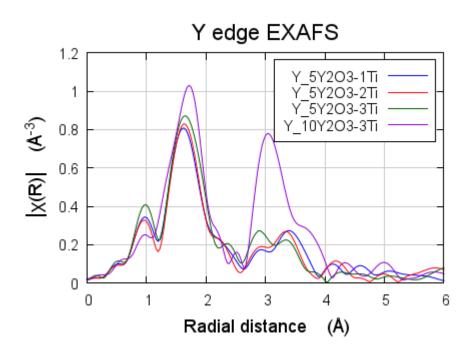
Standards – nanopowders

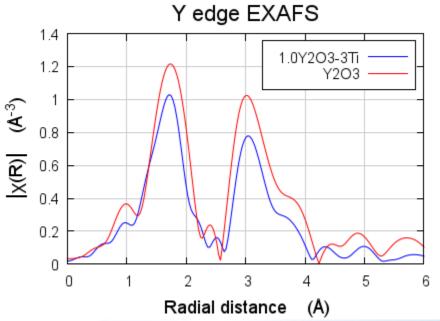



Steel powders – ball milled for 10h and annealed at 1150 °C for 4h

- Fe14Cr3W0.5 (Y_2O_3) with Ti/Y=1.57
- Fe14Cr3W0.5(Y₂O₃) with Ti/Y=2.36
- Fe14Cr3W0.5(Y₂O₃) with Ti/Y=3.14
- Fe14Cr3W1.0(Y₂O₃) with Ti/Y=3.1

Ti Edge XANES

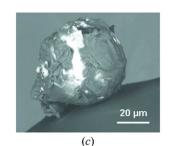


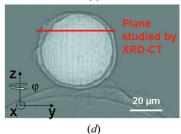


	TiO ₂	Ti	Y ₂ Ti ₂ O ₇	Y ₂ TiO ₅
0.5Y2O3-1Ti	40 (8) %	37 (7) %	23 (6) %	0 (0) %

Y Edge EXAFS

Conclusions

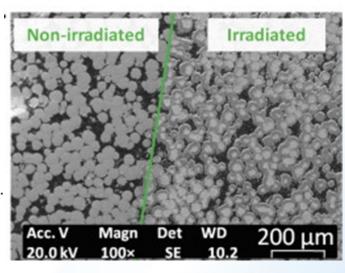

- EXAFS and XANES were collected on Cu/Nb Nanolayers and ODS powder samples
- The disorder in the MD simulation is not consistent with the disorder observed in the measured EXAFS data.
- Several aspects of sample such as curvature of layers introducing strain, defects etc. need to be incorporated in MD simulations.
- EXAFS can contribute to understanding structure of nanofeatures in ODS steels

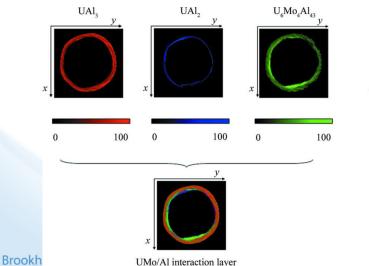


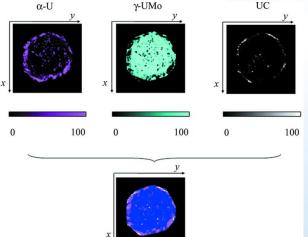
What Experiment Immediately Comes to Mind??

Nuclear Fuel

UMo spherical particles isolated on top of a capillary by (c) SEM and (d) X-ray magnified radiograph.




Optical micrograph of irradiated and un-irradiated


UMo10/Al sample surface.

area at the

Images from Dr. H. Palancher, CEA

Particle core

Reconstructed weight fraction W_{i}^{R} (x, y) slices.



Proposed Experiment: TRISO Particle

- Primary containment in Graphite Reactors
- Very High Temperature (~1600 C in accident conditions)
- Fission products diffuse through clad; breach containment

Experiment (collaboration with ORNL)

- Map the diffusion Silver and Palladium in coatings
- Chemical states
- 10 nanometer resolution
- Etch out the spent fuel, so sample is not radioactive

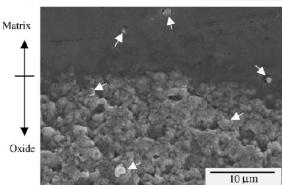
500 micron sphere (OD) UO₂ or (UC or UCO) kernel Four coating layers

- Porous C buffer
- PyC
- SiC
- PyC

In-situ studies of corrosion in zirconium alloys for nuclear energy systems

Simerjeet K Gill, Nuclear Sciences and Technology

Problem Statement: Understanding the corrosion in zirconium alloys by in-situ diffraction studies at NSLS II.


Importance:

Rapid reaction of zirconium alloys with steam at high temperatures under Loss of Coolant Accidents (LOCA) conditions leads to corrosion and break away oxidation resulting in hydrogen gas production and failure of cladding in reactors. Understanding corrosion and engineering alloys with protective oxides that can withstand longer exposures in the reactor are crucial for safer nuclear power. Corrosion of Zirconium alloys important is an issue for achieving higher burnup in today reactors.

Approach:

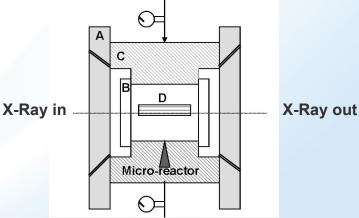
- Materials: Zirconium alloys (Zircaloy-4, ZIRLO, Zr-Nb alloys).
- Experiments
 - Study of oxide microstructures formed to explain differences in corrosion rates of different Zr alloys.
 - To determine the morphology of the oxide layers

 (grain size and shape, strains in the grains, texture, cracks, oxide phases formed and their orientation, incorporation of precipitates, relationship between orientation of oxide grains and matrix grains).
 - Parameters to be varied: Alloy chemistry and microstructure (grain size and texture), the corrosion environment including temperature and exposure time.

Experiment at NSLS-II

Technique:

- In situ characterization of cladding materials and corrosion films using diffraction and high Temperature cell (T=400C-600 °C).
- X-ray microdiffraction


Impact:

- Gain insight of underlying mechanisms and oxide microstructures formed during corrosion of nuclear alloys.
- Elucidate the detailed microstructure of oxide layer.
- Engineer new corrosion resistant alloys and design better cladding materials for LOCA conditions.

Technology Development: Structural materials for fission/fusion reactors, new materials for GEN IV reactors more resistant to LOCA conditions, life-extension of aging materials in current reactors.

Collaboration: Dr Arthur Motta from Penn State University

What does the sample environment look like? What are the demands on the environment?

Micro-reactor for in-situ studies

Additional Questions

Which elements are of most interest?

- Cu and Nb
- Ti and Y
- Ag and Pd
- Fe, Zr, Cr, Ni, U

High Resolution versus Large Sample Area?

- High Resolution!
- And Both!
- Zooming-in is always nice

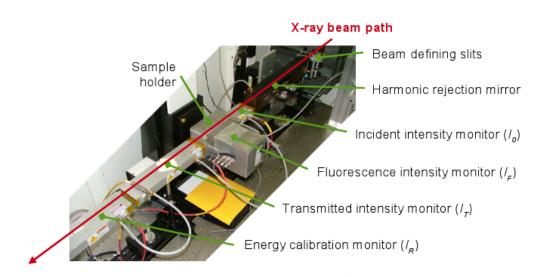
Which techniques are crucial?

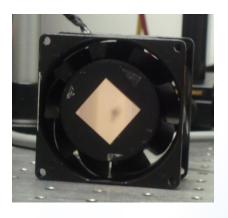
- Imaging with elemental mapping
- Microdiffraction

Extra Slides

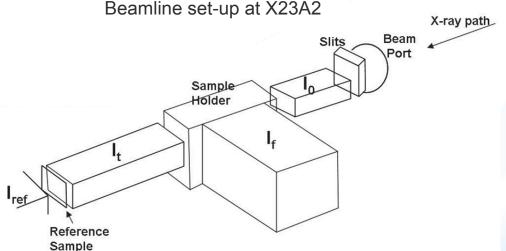
X-ray Absorption Spectroscopy

X-ray Absorption Near-edge Spectroscopy (XANES)


- Formal oxidation state
- Coordination chemistry
- Fitting with linear combinations of standards


Extended X-ray Absorption Fine Structure (EXAFS)

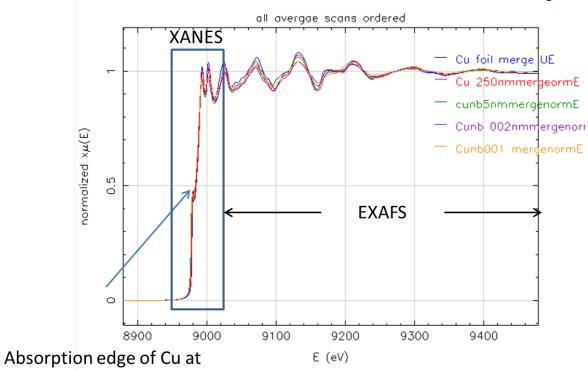
- Distances
- Coordination number
- Species of surrounding atoms
- Fitting to theoretical model from atomic positions
- Fitting to theoretical model with atomic positions from Molecular Dynamics



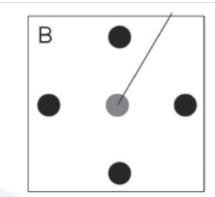
Extended X-Ray Absorption Fine Structure (EXAFS) studies for Cu/Nb Multilayers

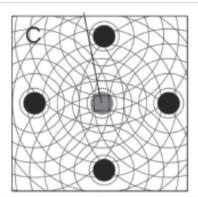
Spinning sample stage

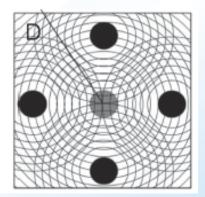
EXAFS in flourescence mode


$$\mu x \propto I_f/I_0$$

 μ is absorption coefficient x is sample thickness I_f is fluorescence X-rays I_0 is incident X-rays


Schematic showing beamline set-up for EXAFS florescence measurements




EXAFS Data from Cu/Nb Multilayer Composites

- X-Ray Absorption Near Edge Structure (XANES)
 -50 to +200eV relative to the edge energy
- Extended X-Ray absorption
 Fine Structure (EXAFS)
 normalized oscillatory part
 of the absorption coefficient
 above the absorption edge
 to ~ 1000 eV or higher

